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Abstract This review covers recent studies on the charac-

terization of the dynamics of lipidic nanostructures formed

via self-assembly processes. The focus is placed on two main

topics: First, an overview of advanced experimental small-

angle X-ray scattering (SAXS) setups combined with various

sample manipulation techniques including, for instance, stop-

flow mixing or rapid temperature-jump perturbation is given.

Second, our recent synchrotron SAXS findings on the

dynamic structural response of gold nanoparticle-loaded

vesicles upon exposure to an ultraviolet light source, the

impact of rapidly mixing negatively charged vesicles with

calcium ions, and in situ hydration-induced formation of

inverted-type liquid-crystalline phases loaded with the local

anesthetic bupivacaine are summarized. These in situ time-

resolved experiments allow real-time monitoring of the

dynamics of the structural changes and the possible formation

of intermediate states in the millisecond to second range. The

need for investigating self-assembled systems, mainly stim-

uli-responsive drug nanocarriers, under nonequilibrium

conditions is discussed. For pharmaceutically relevant

applications, it is essential to combine these investigations

with appropriate in vitro and in vivo studies.

Keywords Phase transitions � Inverted-type

liquid-crystalline phases � Nonequilibrium conditions �
Time-resolved SAXS � Stop-flow mixing �
Temperature-jump

Introduction

Attractive lipidic nanoscale systems for pharmaceutical

applications including liposomal formulations and inver-

ted-type liquid-crystalline phases and their aqueous dis-

persions (cubosomes and hexosomes) have attracted

considerable attention in recent years (Moghimi et al.

2011; Preiss and Bothun 2011; Couvreur and Vauthier

2006; Paasonen et al. 2010; Yaghmur and Glatter 2009;

Malmsten 2006; Yaghmur and Rappolt 2011; Angelova

et al. 2005). In particular, there is growing interest in uti-

lizing these systems as nanocarriers for anticancer drugs

(Moghimi et al. 2011; Namiki et al. 2011; Couvreur and

Vauthier 2006). A key challenge in the application of these

nanoscaled, highly organized hierarchical assemblies as

drug nanocarriers is achieving safe and biocompatible

systems with high drug bioavailability and efficient cellular

uptake and targeting (Moghimi et al. 2011; Preiss and

Bothun 2011; Couvreur and Vauthier 2006). This important

point has to be addressed by investigating the physico-

chemical properties of these formulations and performing

relevant clinical studies. It requires also full understanding

of their stability and dynamic behavior after administration.

In this regard, it is important for various applications to learn

the response of these lipidic self-assembled nanostructures

to environmental stimuli including hydration, temperature,

pH, and the presence of ions and proteins, or to external

stimuli such as ultraviolet (UV) light or a magnetic field

(Preiss and Bothun 2011; Paasonen et al. 2010; Malmsten
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2007; Nguyen et al. 2011; Nguyen et al. 2010; Yaghmur

et al. 2011a; Angelov et al. 2007; Fong et al. 2010).

Therefore, there is increasing interest in basic and applied

research to characterize such self-assembled nanoscale

assemblies also under nonequilibrium conditions.

In general, most of the experimental studies for char-

acterization of lipidic self-assembled soft nanoobjects in

basic and applied research have been, and still are, per-

formed under equilibrium conditions. These investigations

include mapping binary lipid/water systems and charac-

terizing the effect of solubilizing hydrophilic, hydrophobic,

and amphiphilic guest molecules on various self-assembled

nanostructures (Yaghmur and Glatter 2009; Kaasgaard and

Drummond 2006; Larsson 1989; Yaghmur et al. 2005,

2010a; de Campo et al. 2004; Luzzati 1997). However,

over the last 30 years, great efforts have been also invested

in probing nanoscale structures under nonequilibrium

conditions.

In the late 1980s, in parallel with the establishment of

third-generation synchrotrons, first millisecond time-

resolved (TR) X-ray measurements in different SAXS

beamlines were put into practice (Laggner 1988; Caffrey

1989). Especially the study of rapid temperature-driven

transitions in lyotropic liquid-crystal systems attracted great

attention (Tate and Gruner 1989; Laggner and Kriechbaum

1991). Recent applications of infrared (IR) laser-induced

temperature-jump (T-jump) and fast heat-conductive

temperature-drop experiments on low-density lipoprotein

dispersions are summarized by Prassl et al. (2008). Similar

heat-conductive T-jump and T-drop experiments were also

performed for studying the nonequilibrium liquid-crystalline

structures of glycerol monooleate (MO) and phytantriol

(PHYT) systems in excess water (Dong et al. 2010).

Dynamic investigations on the structure and mechanics of

biomimetic model membrane systems are still indispensable

for understanding the geometric/topological relationship

during phase transitions such as in membrane fusion pro-

cesses (Yaghmur et al. 2008, 2010b; Dong et al. 2010;

Angelov et al. 2009). Advanced developments in the field of

pressure jump (p-jump) perturbations (Steinhart et al. 1999;

Winter and Jeworrek 2009; Brooks et al. 2011), and espe-

cially the incorporation of microfluidic devices in SAXS

beamline setups, have lately contributed to this research area

by providing new experimental opportunities (Narayanan

2009; Toft et al. 2008). Chemical processes can be observed

in situ by integration of a batch reactor connected to a flow-

through capillary as applied for, e.g., investigations on real-

time formation of mesoporous materials or time-resolved

observations of digestion processes (Ågren et al. 1999; Te-

ixeira et al. 2011; Warren et al. 2011; Salentinig et al.

2011). Furthermore, combination of SAXS with a stopped-

flow apparatus or a remote-controlled syringe system allows

new insights into structural transition mechanisms and

kinetic pathways under nonequilibrium conditions (Yagh-

mur et al. 2008, 2011a, b; Rappolt et al. 2006; Alam et al.

2011; Salentinig et al. 2011).

Another interesting example of the need for characteriz-

ing the dynamic behavior of self-assembled systems is the

formation of stimuli-responsive liposome assemblies (Preiss

and Bothun 2011; Paasonen et al. 2007, 2010; Yaghmur

et al. 2010b; Namiki et al. 2011; Pornpattananangkul et al.

2010). These present a new and unique family of delivery

systems that are designed for initiating and controlling drug

release on demand as a response to external stimuli such as

a light source or a magnetic field. Investigations under

nonequilibrium conditions are especially helpful in opti-

mizing the utilization of these formulations. Understanding

how to initiate and control the drug release underscores the

need for real-time monitoring of the changes in the nano-

structure, the permeability, and the stability upon exposure

to an external stimulus (Paasonen et al. 2010; Yaghmur

et al. 2010b). In addition to liposomes, there is growing

interest also in introducing stimuli-responsive inverted-

type nonlamellar liquid-crystalline phases (Fong et al.

2010; Yaghmur et al. 2012).

Recent research studies have been especially focused on

mimicking the conditions of direct exposure of lipidic drug

nanocarriers to a biological environment (Yaghmur et al.

2008, 2010b, 2011a, b; Paasonen et al. 2010; Warren et al.

2011; Tilley et al. 2011; Vandoolaeghe et al. 2009; Mulet

et al. 2009; Alam et al. 2011). For instance, we used a

combination of synchrotron SAXS with remote-controlled

addition of buffer to monitor the dynamic behavior of local

anesthetic-loaded preformulations in situ (Yaghmur et al.

2011a). In this work, the model drug bupivacaine (BUP) was

solubilized in low-viscous water-containing preformulations

based on an inverted-type micellar (L2) solution or an

inverted type of hexagonal (H2) phase. We investigated also

the in vitro release properties of BUP from the in situ-formed

inverted-type liquid-crystalline phases and microemulsions

upon hydration (Yaghmur et al. 2012). The obtained results

emphasize the important role of pH and partial replacement

of glycerol monooleate (GMO) by medium-chain triglycer-

ides (MCT) in modulating both the self-assembled nano-

structure and the in vitro drug release profiles.

In this review, key aspects of different studies performed

under nonequilibrium conditions are discussed. Its scope is

restricted to recent investigations performed by the com-

bination of SAXS with other techniques for characterizing

the formation of self-assembled systems in situ and

investigating the dynamics of structural transitions in the

millisecond to second time range.
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Opportunities in time-resolved synchrotron light-based

investigations

Current views on the formation and structural response of

self-assembled systems imply a great variety of dynamic

aspects. These range from the dynamic phase behavior of

lipids upon exposure to biological environmental stimuli

and the structural variations of lipidic nanoparticles in the

presence of a model pharmaceutical cargo, to material

exchange between different lipidic systems and fusion

processes. The structural depiction of these courses of

action calls for synchrotron time-resolved (TR) diffraction

methods (Angelova et al. 2012; Narayanan 2009). The vast

amount of biophysical studies on the lyotropic phase

behavior of lipids concerns temperature- and pressure-jump

(T- and p-jump) studies.

The fastest T-jump facility presently available for TR-

SAXS studies (Laggner et al. 2005) on aqueous dispersions

is installed at the Austrian SAXS station (Amenitsch et al.

1998). This T-jump system features as a core element an

erbium glass IR laser (Rapp and Goody 1991). The laser

pulse (commonly 2 ms and in Q-switch mode 1 ls long) is

deposited onto a capillary sample holder, facilitating

T-jumps on the order of 10–20 �C (Fig. 1a), corresponding

to heating rates of 10,000 �C/s. For the investigation of

liquid-crystalline phase transitions, this means that transi-

tions can be induced within tens of microseconds. Because

changes in the water content, for instance in multilamellar

vesicles (MLVs), typically last a few seconds (Pabst et al.

2000), it is hence possible to decouple the heat-induced

lipid chain melting events from water diffusion processes.

In this manner, it was possible to directly probe, e.g., the

membrane rigidity of phosphatidylcholine bilayers as a

function of cholesterol content (Rappolt et al. 2003). While

the membrane fluidization capability is greatest at 5 mol%

cholesterol, the maximum membrane thinning after the

T-jump reduces drastically at higher cholesterol content

(Fig. 1b).

Moreover, the transition pathways far from equilibrium

can be investigated with T- and p-jump techniques

(Laggner et al. 2005; Winter and Jeworrek 2009). This is

of utmost importance for relevant life-science studies and

pharmaceutical applications, since biological reactions and

also drug administration processes usually take place under

nonequilibrium conditions. Phase heterogeneity (Rappolt

et al. 2000) and the formation of intermediate phases

(Laggner and Kriechbaum 1991; Squires et al. 2005) are

often obscured near equilibrium, but become accessible

under extreme temperature or pressure rates. In Fig. 1c, an

example for rapid TR X-ray diffraction plots during the

cubic gyroid (G, Ia3d symmetry) to diamond (D, Pn3m

symmetry) phase transition induced by a rapid pressure

drop is displayed. Two intermediate phases are labeled

with (a) and (b), in which the latter, longer-living inter-

mediate, has been identified as H2-phase. A similar

experiment was conducted by rapid hydration of the initial

cubic G-phase (Rappolt et al. 2006). Again, an intermedi-

ate, likely H2-phase, was observed, and also here the

geometrical/topological relationships were discussed in

detail. On the left-hand side of Fig. 1d, electron density

maps displaying minimal surfaces of the G- and D-phases

are shown, while on the right-hand side the corresponding

water channel networks are depicted. The maximum elec-

tron density maps are displayed in viewing direction per-

pendicular to the (220)-planes (G-phase) and perpendicular

to the (111)-planes (D-phase), respectively, which are

believed to form an epitaxial relationship (Rappolt et al.

2006).

Further important for the biophysical characterization of

lipidic systems is the investigation of their dynamic

mechanical behavior. Phase transitions can, for instance,

also be induced by application of shear stress (Porcar et al.

2002; Seddon et al. 2011), and membrane pore formation

couples to acoustic irradiation (Deng et al. 2004). In the

subsequent sections, and on the background of recently

published own works, we especially review nonequilibrium

perturbation methods that can become extremely useful for

drug delivery research studies. An overview of presented

techniques applied in combination with synchrotron SAXS

is given in Table 1.

TR-SAXS investigations on light-activated vesicles

Stimulus-responsive nanocarriers have high potential for

application in controlled drug targeting and release on

demand (Preiss and Bothun 2011; Angelova et al. 2012;

Yaghmur et al. 2010b; Paasonen et al. 2010; Fong et al.

2010, 2012). For instance, incorporation of temperature-

sensitive gold nanoparticles (NPs) in liposomes makes

heat-triggered drug release possible, and this at a specific

administration site within a controllable time (Paasonen

et al. 2010; Yaghmur et al. 2010b; Preiss and Bothun

2011). These NP-loaded vesicles respond to an external

stimulus such as UV light or near-infrared laser pulses by

the occurrence of light-induced ‘‘hot spots of NPs,’’ which

immediately induce heat transfer to the surrounding lipid/

water material (Paasonen et al. 2010; Preiss and Bothun

2011; Yaghmur et al. 2010b; Wu et al. 2008). The actual

drug release is then triggered by a heat-driven increase of

the membrane permeability. This approach has established

important liposomal compositional and structural vari-

ables that control the membrane permeability and the

release of pharmaceutical cargo on demand (Paasonen

et al. 2007, 2010; Yaghmur et al. 2010b; Fong et al.

2009).
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In two recent studies, high permeability was achieved

from liposomes having different lipid composition by

induced membrane topology changes from planar ? tubu-

lar monolayers (Yaghmur et al. 2010b), and geometry

changes from rippled ? planar lamellae (Paasonen et al.

2010). The release mechanism was triggered in both cases by

UV light at k = 365 nm, and simultaneous nanostructure

investigations with synchrotron SAXS were carried out.

In Fig. 2, the optothermally induced structural changes

in multilamellar lipid vesicles (MLVs) of N-methylated

dioleoylphosphatidylethanolamine (DOPE-Me) loaded with

hydrophilic gold NPs with size of 4 nm are shown. The

structure conversion pathway from vesicles with fluid

lamellar (La) membranes to H2-phase through an interme-

diate state of uncorrelated fluid bilayers during in situ UV

activation was observed (Yaghmur et al. 2010b). The

experiments demonstrated that, depending on the UV lamp

intensity (i.e., on the heat load), the La-H2 phase transition

can be obtained in a few seconds, and further, 1 min after

switching off the UV lamp, the nanostructure retransforms

Fig. 1 T- and p-jump experiments with synchrotron SAXS on

lyotropic liquid-crystal systems. a Setup of a T-jump experiment

using an erbium glass laser [figure reproduced with permission

(Orthen et al. 2004)]. b Probing palmitoyl-oleoyl-phosphatidylcho-

line bilayer fluidity as a function of cholesterol content by applying

2 ms laser flash-induced T-jumps from 10 to 13 �C. Bilayer models

basing on structural parameters deduced from X-ray diffraction

experiments without and with cholesterol are depicted on top. The

maximum membrane thinning Dd is shown below [figure taken from

Rappolt et al. (2003) with permission]. c TR-SAXS diffraction plots

showing the cubic G- to D-phase transition induced at 59.5 �C by a

rapid pressure drop of 600 to 240 bar [figure taken from Squires et al.

(2005) with permission]. d The same phase transition induced by

rapid water injection to the G-phase of monoolein. Electron density

maps of the minimal surface (left side) and the water channel network

(right side) are presented before and after hydration [figures adapted

from Rappolt et al. (2006)]
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into MLVs. Thus, in perspective, this stimulus-responsive

material could in principle even serve as a drug deposit that

provides repetitive on-demand drug release. A detailed

description of the molecular rearrangements during the

transition from the well-ordered MLVs in the fluid La-phase

to the H2-phase via the formation of the intermediate phase of

uncorrelated fluid bilayers was put forward in our recent

study (Yaghmur et al. 2010b).

In situ monitoring of nanostructures by coupling rapid

mixing to TR-SAXS investigations

In recent investigations, a structural mechanism for how

Ca2? ions at low concentrations induce the recrystalliza-

tion of dioleoylphosphatidylglycerol (DOPG)/monoolein

(MO) vesicles or a molten disordered sponge-like (L3)

phase to form well-ordered one-, two-, or three-dimen-

sional nanostructures was proposed (Yaghmur et al. 2008,

2011b). A schematic description of these extremely fast

nonequilibrium disordered–ordered structural transitions

within the milliseconds to seconds range is illustrated in

Fig. 3a. For a series of aqueous dispersions containing

Table 1 Rapid perturbation techniques providing opportunities in biophysics (first 3 methods) and drug delivery research (last 4 methods)

Perturbation method Opportunities References

Infrared laser or thermoelectric

T-jump; heat-conductive T-jump

(drop) by rapid injection into

preheated (precooled) sample

holders

Detection of intermediate phases Laggner and Kriechbaum (1991),

Laggner et al. (2005), Conn

et al. (2006), Prassl et al. (2008),

Dong et al. (2010)

Geometric/topological studies

Decoupling of heating events from water diffusion

Pressure jump Detection of intermediate phases Steinhart et al. (1999), Winter and

Jeworrek (2009), Brooks et al.

(2011)
Geometric/topological studies

Dynamic bidirectional phase-transition investigation

Shear stress; acoustic irradiation

(ultrasound)

Dynamic mechanical properties of lipidic systems Porcar et al. (2002), Seddon et al.

(2011), Deng et al. (2004)

Stop-flow rapid mixing (fast

processes) and vortex mixing

(slow processes)

Mixing experiments with solutions and dispersions Yaghmur et al. (2008), (2011b),

Narayanan (2009), Panine et al.

(2006), Weiss et al. (2005),

Alam et al. (2011), Tilley et al.

(2011)

Probing environmental changes (pH, salinity)

Interparticle mixing

Rapid injection/immersion Hydration experiments on viscous liquid crystals or other viscous

formulations

Rappolt et al. (2006), Yaghmur

et al. (2011a)

Probing environmental changes (hydration, pH, salinity)

Flow-through capillary connected

to a sample reaction cell

Following process operations Ågren et al. (1999), Teixeira et al.

(2011), Warren et al. (2011),

Salentinig et al. (2011)
Product mixing

Chemical reactions

Self-assembly, crystallization

External physical stimuli such as

flash lamps, UV light source, and

magnetic field

Triggering of stimuli-responsive materials Rapp and Goody (1991), Yaghmur

et al. (2010b), Paasonen et al.

(2010), Namiki et al. (2011)
Rapid release of caged compounds

Light-activated drug release

Magnetically targeted drug delivery systems

Fig. 2 Optothermally induced structural changes in MLVs loaded

with hydrophilic gold NPs. Synchrotron TR-SAXS experiments

combined with UV light source irradiation demonstrated that the

structure pathway from the fluid lamellar (La) phase to an inverted

hexagonal (H2) phase passes through an intermediate state of

uncorrelated membranes. The electron density profile of the La-phase

is shown at the far left, and the electron density map of the H2-phase

is shown on the far right. For the H2-phase, the electron density

values are color coded [figure adapted from Yaghmur et al. (2010b)]
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different DOPG/MO ratios, in situ monitoring of these

intriguing transitions was achieved by the combination of

synchrotron SAXS with a stopped-flow apparatus (Fig. 3b)

(Yaghmur et al. 2008, 2011b). The obtained clear experi-

mental evidence on the strong and fast binding of Ca2?

ions to the negatively charged DOPG/MO membrane

shows the important role of the lipid composition, the

investigated Ca2? ion concentration, and the investigated

temperature in forming well-ordered multilamellar or

nonlamellar phases. Moreover, different static SAXS

measurements demonstrated the importance of structural

analysis of self-assembled systems under realistic excess of

water conditions (Yaghmur et al. 2008). The removal of

excess water to form lipidic pellets prior to SAXS exper-

iments can affect the nanoscaled structures.

In Fig. 3, two examples on the in situ monitoring of the

direct calcium-triggered La–H2 (panel d) and L3 to inver-

ted-type cubic (V2) phase (panel c) transitions are pre-

sented. In these studies, it is important to remark that the

fast binding of Ca2? ions to the negatively charged DOPG/

MO membrane induces rapid dehydration and concomitant

condensation of the phospholipid bilayer membrane due to

the screened electrostatic repulsive forces. It is intriguing

to monitor in situ the very fast reordering of the lipids in

these self-assembled structures and to observe the ease of

tuning rapidly the membrane curvature as soon as the

vesicles or L3-phase are exposed to Ca2? ions (Yaghmur

et al. 2008, 2011b). It should be noted that the first stages

of binding of this divalent cation to the negatively charged

DOPG molecules are undetectable in the investigated time

window, as they take place in the nano- to millisecond

range. This calls in the future for designing SAXS methods

coupled to rapid mixing with nanosecond time resolution

(see ‘‘Conclusions and perspectives’’).

The combination of SAXS experiments with rapid

mixing is important for learning more on the interaction

mechanism of metal ions with biologically relevant lipids

under conditions mimicking the biological environment

and for further improved understanding of the biological

role of Ca2? ions in living cells.

Fig. 3 a Schematic illustration of the in situ calcium-triggered

formation of well-ordered nanostructures: the two V2-phases with

symmetries Pn3m and Im3m, the H2-phase, and the La-phase.

b Schematic illustration of the setup combining synchrotron SAXS

with a stopped-flow apparatus. In the stopped-flow apparatus, one

syringe contained a buffer with Ca2? ions, whereas the other was

filled with DOPG/MO-based aqueous dispersion. c Selected SAXS

patterns for three investigations at 50 �C: L3-phase in the absence of

Ca2? ions, and two examples of the in situ formation of bicontinuous

cubic phases. On the right, the contour plot clearly displays the

characteristic reflection patterns of the Pn3m phase. d The very fast

calcium-triggered H2-phase formation at 50 �C upon rapidly mixing

DOPG/MO vesicles with low concentration of Ca2? ions is presented

in a SAXS contour plot [figures adapted from Yaghmur et al. (2008,

2011b)]
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TR-SAXS for in situ characterization

of stimulus-responsive drug-loaded formulations

A practical strategy for controlled release of drugs from

potentially safe and biocompatible lipidic formulations at

the administration site is the use of low-viscous stimulus-

responsive drug preformulations, which are transformed to

inverted-type highly organized hierarchical structures

(such as nonlamellar H2 and V2 nanostructures) upon

exposure to the biological environment (Yaghmur et al.

2011a; Malmsten 2007; Chang and Bodmeier 1998;

Norling et al. 1992). Optimal utilization of such delivery

methods requires full understanding of the dynamics of

these preformulations by mimicking the conditions of their

direct exposure to excess water under physiological con-

ditions (pH 7.4, 37 �C) and also evaluating their drug

release properties.

In our recent investigations (Yaghmur et al. 2011a),

observation of the structural events upon exposure of low-

viscous water-containing preformulations of inverted-type

micellar solution (L2) or an H2-phase containing the local

anesthetic bupivacaine (BUP) to excess buffer was

achieved by the combination of TR-SAXS experiments

with remote-controlled addition of buffer (Fig. 4a). Fig-

ure 4 shows also two examples on the performed TR-

SAXS experiments as buffer with pH 7.4 was injected into

Fig. 4 a In situ

characterization of lipidic

BUP-loaded formulations. In

panels b and d, the contour plots

display the fast hydration-

triggered structural transitions

(dashed arrows mark the arrival

of the water front). SAXS

patterns of all appearing phases

at different elapsed times are

shown in panels c and e. The

two Bragg reflections of the

intermediate Pn3m cubic phase

are marked with ‘‘D’’ and those

of the inverted hexagonal phase

with ‘‘H2’’ [figures adapted from

Yaghmur et al. (2011a)]
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two different BUP preformulations (low-water-containing

L2 solutions) that were prepared at pH 7.4 (panels b and c)

or at pH 6.0 (panels d and e). The results obtained in both

experiments show fast, interesting hydration-induced

structural transitions: fast rearrangement of the lipid and

the drug molecules in excess phosphate buffer followed by

complete conversion of the preformulations to the fully

hydrated H2-phase (Fig. 4b–e). The equilibrium nano-

structure is reached within about 1,000 s. The response of

both preformulations was similar, involving a fast hydra-

tion stimulus that causes significant changes in the struc-

ture. The results suggest fast redistribution of BUP

molecules between the polar interface and the hydrophobic

regions, since the structural transition from the self-

assembled preformulations to H2-phase is not direct but

involves the intermediate formation of a BUP-poor Pn3m

cubic phase as an intermediate phase. Similar, Angelova

and coworkers reported also on interesting studies on

nonequilibrium and intermediate states in different lipid

systems being attractive as nanocarriers (Angelov et al.

2007, 2009, 2011).

The in vitro rotating dialysis model was used to study

BUP release after rapid exposure of GMO- or GMO/MCT-

based preformulations to excess of phosphate buffer in the

donor compartment of the in vitro rotating dialysis cell

model at 37 �C (Yaghmur et al. 2012). It is evident from

the evaluation of the release rates of BUP while varying the

GMO/MCT weight ratio in these preformulations that the

lipid composition plays a vital role in modulating the BUP

release profiles in vitro. The release rate becomes faster

with increasing MCT content. It is enhanced in the same

direction as the observed Pn3m ? H2 ? L2 transition.

The obtained data emphasize also the important role of pH

on modulating both the self-assembled nanostructure and

the in vitro drug release profiles. The reported pH sensi-

tivity of the structure and the BUP release properties is

most likely due to the change in affinity of the solubilized

BUP to the lipid-based nanostructures as reflected in the

determined lipidic partition coefficient between the GMO-

based liquid-crystalline nanostructures and the phosphate

buffer solution.

Conclusions and perspectives

SAXS is one of the most powerful methods for probing

the nanostructures of self-assembled systems. It is com-

monly used for structural characterization of various

nanosystems that are promising for the formulation design

of food and drug nanocarriers. In recent years, this

growing interest has focused not only on their structural

characterization at the nanoscale prior to use, but also on

fully understanding their structural formation mechanism

and dynamics as they are exposed either to an external

physical stimulus or to different biologically relevant

environments. There is promising progress in the devel-

opment of SAXS coupling to other techniques (Table 1)

for real-time monitoring of self-assembled systems in the

millisecond to second range under nonequilibrium condi-

tions. This helps also to improve understanding of the

basic principles involved in their interaction with active

biomolecules and metal ions. For instance, SAXS in

combination with different techniques is auspicious in

learning the characteristics and properties of stimuli-

responsive assemblies attractive as nanocarriers for solu-

bilizing and controlling the release of drugs, peptides, and

other bioactive materials on demand.

Future perspectives concern mainly technical develop-

ments for delivering new and efficient experimental

opportunities. The time resolution in p-jumps can be

optimized by use of piezoelectric stack pistons to generate

jumps up to 200 bar in 150 ls (see Brooks et al. 2011 and

references therein). Similar Q-switched lasers can produce

1-ls pulses, but also here the energy release is reduced to a

few hundred Joules, allowing T-jumps only on the order of

1 �C (Rapp and Goody 1991). Further, the T-jump tech-

nique using IR laser heating can be refined by the use of a

second, fast triggering laser in continuous mode to keep the

final temperature constant, i.e., to avoid passive cooling

after the T-jump. It is worth pointing out that there are a

number of emerging experimental setups that not only

combine TR-SAXS with various sample manipulation

techniques, but also include probing simultaneously other

physical parameters. First, differential scanning calorime-

try (DSC) X-ray cells allow medium to fast temperature

ramps (1–30 �C/min), recording simultaneously the X-ray

scattering patterns and the enthalpy changes of the speci-

men (Rappolt et al. 2008). Second, setups combining TR-

SAXS with simultaneous spectroscopic measurements

have been put into practice, e.g., the complementary

technique Fourier-transform infrared spectroscopy (FTIR)

was applied to the study of self-assembly of mesostructured

films during dip-coating (Innocenzi et al. 2007). Last, fast

biological and chemical reactions can be studied using

continuous flow free-jet mixers (Marmiroli et al. 2009),

pushing down the time limit to microsecond resolution, i.e.,

roughly three orders of magnitude faster than the common

stop-flow apparatus. This relatively new mixing technique

is attracting also the new community of upcoming X-ray

free electron laser (X-FEL) source users (DePonte et al.

2011). It is clear that future X-FEL experiments designed

for biological and pharmaceutical research will be a great

challenge. This is a new tool with the ambitious plan of

providing new insights into the fastest temporal behavior of

even complex molecular systems: reactions with picosec-

ond (10-12 s) time resolution will become accessible.

838 Eur Biophys J (2012) 41:831–840
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